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Abstract-By considering perturbations about the critical state the governing equations for the
buckling of spatial rods are derived. These equations involve the curvature and twist of the rod
which in general are different from those of the initial. i.e. unloaded. geometry. An incremental
procedure is outlined for updating the rod's geometry up to the critical state. Other generalities
incorporated into the analysis include the effect of the initial bending moments and shear forces as
well as the axial loads. Based on the theory outlined it is shown how an exact stiffness matrix and
an approximate geometric stiffness matrix may be developed for a curved and twisted rod. Through
several examples the theory is verified and the performance of the element developed is assessed.

I. INTRODUCTION

Spatially curved and twisted rods arc used in many mechanical and aeronautical engineering
systems. For purposes oflinear stress analysis such rods arc often modelled by an assemblage
of prismatic beam clements. For buckling analysis however such a representation has a
number of druwbacks. The most important of these is that in the standard linear buckling
analysis of beam systems, initial deformations arc ignored. This is acceptable for such
systems as pretwisted rods and deep arches which exhibit insignificant changes in geometry
before buckling. On the other hand for systems such as helices which under most loading
conditions exhibit appreciable changes in geometry before buckling a linear buckling
analysis will lead to erroneous results. Furthermore the conventional geometric stiffness
matrix of prismatic beam elements used in commercial F.E. programs, takes account of
initial axial loads only. Accordingly a representation by prismatic elements will overlook
the effect of initial bending moments and shear forces. It should also be noted that the
representation of curved and twisted rods by prismatic clements introduces an added error
into the analysis; namely the geometric error. Reduction of this error requires the usc of a
large number of elements and results in large size system matrices. This increase in the size
of the system matrices is generally not of major concern for linear stress analysis, governed
by linear algebraic equations. However, for buckling analysis governed by eigenvalue
equations, the increase in the size of system matrices is of importance from a computational
perspective. Furthermore in the presence of geometric errors the bounds on the eigenvalues
are lost.

Until recently, spatially curved and twisted rod elements had received little attention.
However there is extensive literature on the elements for purely curved and purely pretwisted
rods [see, e.g., Abbas (f979), Tomas and Dokumaci (1974), Yamada and Ezawa (1977)
and Ye and Gallagher (1983)]. For curved and pretwisted rods of circular cross-section an
exact stiffness matrix was derived by Mottershead (1980). Mottershead (1982) also derived
a consistent mass matrix and through the addition of some inconsistent nonlinear terms in
the strain-displacement relations he investigated the dynamic stability of helical springs. A
constant strain curved and twisted element was derived by Tabarrok el al. (1988a) for static
and Tabarrok el al. (l988b) for dynamic analysis of spatial rods. For buckling analysis
Xiong and Tabarrok (1989) developed an approximate geometric stiffness matrix based on
a simplified set of equilibrium equations which accounted for initial axial loads only.

In this study a more comprehensive analysis is carried out and element matrices are
derived for the linear and nonlinear buckling behaviour of spatial rods. In addition to the
initial axial load, the formulation takes into account the initial moments and shear forces
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Fig. I. Internal and applied forces.

as well as initial deformations. The lalter is accomplished through the updating of the
curvature and twist of the rod under increasing loads. The present clement may be used for
conservative and nonconservative buckling analysis of spatial rods. The performance of
the clement developed is assessed through the comparison of the results obtained, for sever,11
examples, with those given in the literature.

2. EQUILIBRIUM EQUATIONS

For small deformation linear analysis the equilibrium equations of spatial rods may
be expressed as

Q' +Ko x Q+Ff) == 0,

M'+Kf) x M+to xQ+Go = O.

( I )

(2)

where Q denotes the vector of internal forces, M the vector of internal moments and F and
G are vectors of external forces and moments, respectively (see Fig. I). While t is the unil
tangential vector to the centreline of the rod, K is the vector of curvature K and torsion r.
The subscript 0 indicates the quantity in the initial (undeformed) state. Using the principal
coordinate system as shown in Fig. 2, with CI as the unit principal normal, C2 the unit
binormal and c), the unit tangent, one can write all vector quantities in component forms.
For instance, the curvature vector and the unit tangential vector for the initial state may
be expressed as

(3)

(4)

From eqn (3) and Fig. 2 it can be seen that the normal and the binormal directions of the
rod's centreline are assumed to coincide with the principal directions of the rod's cross­
section. Clearly this is the case for most curved and twisted rods used in practice, e.g. helical
springs, but apart from the special case of the circular cross-section the two sets ofdirections
need not be coincident.

By introducing the constitutive equations and strain-displacement relations one can
describe the equilibrium equations in terms of displacements (1110 112' 113) and rotations
(° 1, O2 , 0).
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Now along its axis a rod is generally quite stitf. but its flexibility in bending and torsion
can give rise to significant changes in its original. i.e. unloaded. geomctry. Thcse changes
in geometry arc largely governed by finite rotations which bring about changes in K and t.

One can show that for modcrate rot.ltions, these changes take the following forms for rods
with uniform curvature and twist [see Tabarrok and Xiong (19X9)! :

(5)

(6)

(7)

Thus by applying the loads incrementally one can update the rod's geometry through the
above eq uations and finally obtain the solution of the equilibrium equations in the deformed
state. If one uses a convective set of coordinates, then the current coordinate system will
remain as the principal axes of the cross-section. in which case

(K)

3. PERTURBATION ABOUT TilE CRITICAL STATE

Let us suppose that the deformed stale is in the critical state, i.e. there exist other
equilibrium states in the vicinity of this state. To examine these adjacent equilibrium states
we consider a perturbation about the critical state. We denote the quantities in the perturbed
state as follows:

Q = Q+q. !VI = M+m. R= K+~K.

f = F+ r. G= G +~.

(9)

(10)

These quantities will be referred to the coordil/lite system iI/ the critical stl/te. Since this
coordinate system will not be along the principal axes of the cross-section in the perturbed
state. there will arise a change of curvature in the principal normal direction. i.e.
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( II )

Now since both the critical state and the perturbed state are possible equilibrium con­
figurations. it follows that

and

Q' + K x Q+ F = O.

M'+K x M+t x Q+G = 0,

(Q+q)' + (K +.1K) x (Q+q) + F = O.

(M+m)' +(K+.1K) x (M+m)+t x (Q+q)+G = O.

( 12)

( 13)

( 14)

( 15)

These equations apply to the conservative case. and the analysis of nonconservative loading
is addressed in the appendix. Now neglecting quantities of second order of smallness and
subtracting eqns (12) and (13) from (14) and (15) respectively, we find the governing
equations for the perturbed quantities, expressed in component form, as follows:

c(l-rq!+Kq\-r*Q!+K*Q) = o.
q!+U/,-KrQ\+r*Q, = o.
q'\-Klfl-K*QI +K~Q! = 0,

( 16)

( 17)

( 18)

( 19)

(20)

(21 )

The changes in the curvature vector may be expressed in terms of incremental displacements
(lIf, u!, II!) and the axial rotation U!. These expressions are essentially similar to those in
eqns (5) and (6) except that now there is an addi tional change of curvature; namely Kf.
These are given by Tabarrok and Xiong (1989) :

r* = Ur +KII!' +,,;rur,

(22)

(23)

(24)

It now remains to introduce the constitutive and displacement strain relations. For a
homogeneous and isotropic beam undergoing small strain, these equations arc given by

-G(L'-. = 1:*1 = 11*1' - ru~ + ";lIf - U~,Y A _. -

q! * *' * 0*
GA

=r., =/1, +rll l + I'y --

!!.!.... = e* = 11*' -,,;u*EA 3 3 I'

nIl- = k* = O*'-rO*+,,;O*Ell I I 2 J.

m,
-- = k* = O~' +rO*El! 2 - I ,

(25)

(26)

(27)

(28)

(29)



where
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(30)

,. = shear coefficient.
E = Young's modulus.
G = shear modulus.
A = area of cross-section.

II. I z = second moments of area.
I~ = torsional constant.

kT. k!. kt = incremental curvature quantities associated with mi. mz. m~.
6T. 6!. 6t = incremental strain quantities associated with ql. qz. qJ.

By suppressing the shear strains in eqns (25). (26) and using the resulting constraint
equations in eqns (28)-(30) one can readily recover the changes in curvature and twist of
the centreline as given in eqns (22)-(24).

4. VARIATIONAL FORMULATION

For the purposes of developing element matrices it is useful to construct a variational
functional the extremum conditions of which would yield the equilibrium equations derived
above. and the related boundary conditions. This may be accomplished by writing the inner
product of the equilibrium equations. when expressed in terms of the kinematic quantities.
with the appropriate virtual displacements. It is useful to integrate such a virtual work
expression by parts. Such an integration has the following desirable effects: (i) the associated
houndary conditions become identified. (ii) the energy terms emerge. and (iii) derivatives
ortower order will appear in the functional. The latter effect is of importance for interclement
compatihility requirements. On carrying out this integration the following expressions for
lhe str'lin energy and the virtual work of initial forces may be obtained:

and

+ EA(IIT' -KIIt)Z + Ell (Or' -ror +KOT}1

+ EI1(Or + rOtf +G/J(Or -II:Ot)1} ds.

c5W = f' {- WJe5[(IIr' -rur+KIIT)1+(lIr +rut)11
lJ

+ [Q zOje5(IIr' - rur + KlIj - On - Q I Oje5(lIr + rut + 0nJ
+ [Q I(1Ir' - rllr + KilT) + Qz(lIr + rut)lc5(lIt' -1I:1It)

+ [Q10t +Q10rlc50r +[- M}Orc5(Or' - ror +KOn

+ At JOtc5(Or + rOt)] + [M,Or - M 10t]c5(Or -KOn

+ [,\I10rc5(Or' -ror +KOn - M ,Ojc5(Or + rOt)]} ds.

(31 )

(32)

The terms in the round brackets. in the first term of this integral, are the slopes of the
centreline. Hence the first term describes the work of the axial force QJ as it moves through
a distance equal to the difference between the original length of the centreline (in the critical
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state) and the projection of the centreline for the bent and twisted perturbed state. onto the
centreline in the critical state. That is. this term is the generalization. to curved and twisted
rods. of the familiar potential energy of the axial force for prismatic rods. Now while in the
principal coordinates of the critical state the shear forces Q I and Q~ have no components
in the binormal and the normal directions. respectively. they will have components in the
directions of the binormal and the normal of the perturbed state. These components. given
by Qle! and Q~e!. will have virtual work contributions associated with the shear strains.
These virtual work terms appear in the second term of the above integral. In a similar
manner the components of Q, and Q2 will have a virtual work term associated with the
axial strain in the perturbed state. This work is given in the third term of the above integral.
Q,er and Q2e!. in the fourth term. are the contributions of Q, and Q~ to the torque per
unit length and hence this term describes the virtual work by these incremental torques
associated with the rotation er. The fifth term accounts for the work of the components of
twisting torque AIh in the perturbed state. associated with changes of curvature in the
normal and binormal directions. The sixth term takes account of the work done by the
components of AI I and M 2. in the perturbed state. associated with the changes of centreline
rotation. Finally the seventh term accounts for the work of the components of AI I and AI 2.

in the perturbed state. associated with changes of curvature in the normal and binormal
directions.

With the energy terms at hand. one can write the expression for the virtual work
theorem as

<m - (JU -eHv' (33)

By carrying out the variations and utilizing the equilibrium relations for the initial force
qu'lOtities. one can show that

<m := fl {<5uf[ - ,'GA(uf - rut + h:uf - O!r + ryGA(ut' + ruf +On - h:l::A(uj' - h:Un
II

+ Q2(Oj' + h:u!' + h:run - Q J(uf" - lru!, + h:uf' - rZuf)]

+ (Jut[ -yGA(u!, +ruf+On' -ryGA(ur -rut +h:uf -on

+ QJ( - u!,' - lruf + rZu! - rh:uT + h:OT) - Q I (OJ' + h:1I!' +h:runJ

+ (JuT[ - EA(uj' - h:ufr + h:}'GA(uf - rut + h:uf -on

+ Q, (uf" - lru!' + h:uT' - rZuf) - Qz( -u!" - lruf' + rZu! - rh:uT + h:Of)]

+ (Jon - Ell (Of - rOt + h:Of)' + rElz(O!, + ron - h:GIJ(Oj' - h:On

+ ryGA(u!, +ruf +on + Mz(Oj' -h:On - MJ(O!' +rOnJ

+ (JO![ - El2(O!' + rOfr - rE/1 (Or - rO! + h:Ofj

-,'GA(uf -rut +h:uf -on - M ,(Or -h:On+ M J(Or -rOt +KOfj]

+ (JOf[ - Gl1(Oj' - h:Of)' + h:EI I (Of - rOt + h:On

+ M, (O!, + ron - AIz(Or - rO! + h:OT)]J- ds

+ {c>unyGA(ur - rut + h:uT - ot) +QJ(ur - ru!' + h:uT} - QzOf]

+ e5u![yGA(u!, + ruf + Of) + QJ(u!, + run + Q I Of]

+ e5uf[EA(uf' - h:Un - Q, (uf - rut + h:uT) - Q2(U!, + rum

+c>0frEI, UW - rOt + h:Of) + AIIn - MzOT]

+ c50![EI2(O!, + ron - M IOf + M, Of]

+c>Oj[GI)(Or -h:On - M,O! +MzOml~. (34)
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It is not difficult to see that the Euler-Lagrange equations that emerge from the above
variations yield the correct equilibrium equations in translation and the correct boundary
conditions. for incremental quantities. For equilibrium equations in rotation one finds that
the curvature changes of the centreline namely,,·. t· and "1. which appear in the equilibrium
equations (\9)-(2\). are replaced by the curvature changes associated with the constitutive
relations. as given in eqns (28)-(30). This is not unexpected since in reality the moments
and the twist act on finite size cross-sections and not on the centreline. For slender rods for
which shear strains may be neglected the two forms of curvature change become identical
as one can readily verify by solving for O! and 01 in eqns (25) and (26) and eliminating the
same from eqns (28)-(30). The result found for changes of curvature will be identical to
the expressions given in eqns (22)-(24).

5. A FINITE ELEMENT MODEL

With a variational statement at hand we are now in a position to develop a finite
element model for the buckling analysis of spatial rods. Because of the ease with which
polynomials are differentiated and integrated they are almost always used in the devel­
opment of finite element models. However in some cases. such as that at hand, polynomials
cannot describe the rigid body modes [see Tabarrok et 01. (\988a)]. and are therefore not
suitable for the development ofclement matrices. Evidently exact solutions of the governing
equations provide the best choice for the shape functions. For the problem at hand the
exact solutions will be functions of the critical load and will result in a nonlinear eigenvalue
system equation.

The solutions to the governing equations in the absence of initial (internal) and external
forces provide a good compromise. This solution may be obtained from the equilibrium
equations:

and the constitutive relations

{if}' + [xl{ if} = {O}, (35)

(36)

where {,,} T = [l/l If!'' J m1m l "'1]' {u· }I' = [u1 u! ut 01 O! Ot]. and [D] is a diagonal matrix
containing the stilfness parameters yGA, yGA. EA, El" Ell and GIJ and

where

[
tel

[X] = [J]
[O]J
[e] • (37)

[e] =[ ~
-k

- t "] [0o O. [J] = I

o 0 0

Because of the similarity of the form of these equations and that of the homogeneous linear
equilibrium equations. the expressions for {q} and {II·} have the same form as that given
by Mottershead (1980). Use of these expressions will yield an exact stiffness matrix and an
approximate geometric stiffness matrix in the system eigenvalue equation. Equations (35)
and (36) are best solved by first obtaining a solution for {q} from eqn (35) which upon
substitution into eqn (36) will allow one to obtain a solution for {u·}. Before doing so it is
worth examining the form of the energy terms given in eqns (31) and (32). In terms of the
above notation we may express U as
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(38)

Now using eqn (36) we may write this as:

Likewise the virtual work term may be expressed as:

c5W= r' _~QJc5[(q,(S) +0!)2 + (qz(S) -or)ZJ
Jo 2 yGA yGA

+[Q'O*c5 (ql(S») _Q 0*15 (q2(S»)]
• J yGA I J i'GA

+[Q (ql(S) +0*) +Q, (Q2(S) -0*)]15 (qJ(S»)
1 yGA 2 • yGA I EA

(39)

(40)

The functions to he integrated in eqns (39) and (40) appear as trigonometric and products
of polynomials and trigonometric terms and they involve 12 integration constants. These
constants may he related to six nodal varia hies (three in translation and three in rotation)
at each end of the element. The transformation from the integration constants to the nodal
variables may he incorporated into the integrations in eqns (39) and (40). That is. one may
cxpress the function {q(s)} and {u*(s)} in tcrms of the nodal displacement variahlcs {I/* },.• i.e.

{(I(s)} = [A(s)]{u·:<.

:1/*(.1'): = [B(s)HII*}...

(41 )

(42)

wherc [A(s») and [B(s») arc the shape function matrices given in Mottershead (19XO).
Then on using eqns (41) and (42) and employing six point Gaussian integrations, eqns

(39) and (40) may be writtcn, as:

U - I { .1 T [L'] f • I- 2 1/ f " n < lUi <,

iHV = ;.{u·}~[Kq]..J{u*],.,

(43)

(44)

where ;. is the stiffness load factor. and the stiffness matrix [K].. is symmetric while the
geometric stiffness matrix [Kq )< is nonsymmctric; it may be symmetrized in the manner
used by Ye and Gallagher «(983). i.e.

(45)

Following the conventional assembly procedure. the final system matrix eigenvalue
equation is:

[K]{u*: = ;'[K~]{II·:. (46)
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6. IMPLEME~'TATION

The finite element model developed here is based on the updated Lagrangian equi­
librium equations. that is. the initial displacements are taken into account by updating the
geometric configurations. More precisely eqn (46) may be written as:

[K(K. t)]{u*} = ;.[K~(K, t)]{u*}, (47)

where K. t are curvature and twist. respectively. in the current state. as expressed in eqns
(5) and (6). This element can thus be used in the buckling analysis ofspatial rods ofdifferent
configurations including the cases where the initial displacements have a significant effect
on the rod's geometry. prior to buckling. For these cases, the solutions are obtained
iteratively by solving eqn (47) and eqns (7) and (8). An effective procedure is as follows:

Step I. In the initial undeformed state. when the load factor Po = O. form the stiffness
matrix [K(Ko. to)]. Conduct a static analysis for a unit load and record {u(s)}. carry out
the eigenvalue analysis with

(48)

and find an estimate for;. and the mode {u*}. In this case ;. is the (linear) Euler buckling
load;

Step 2. Consider a small incremental !!J.P ~ )., and calculate the incremental changes
in curvature, !!J.K, and twist. !!J.t. If the prebucklcd deformations are assumed small,t

(49)

(50)

where the displacements correspond to the unit load. in Step I. Now increase the load
factor to PI = Pu+ !!J.P, then the curvature K and twist t for the current state become

K=KO+!!J.K, t=ro+!!J.r;

Step 3. Form [K(K. t)] and [K~(K. t)], and carry out an eigenvalue analysis with

[K(K, t)]{u*} = (Po+;.)[K~(K, t)]{u*}.

(51)

(52)

In this step ). is the incremental eigenvalue;
Step 4. Check for convergence. If ). is smaller than a preset tolerance value. stop,

otherwise repeat Steps 2 and 3, with K u• to and Po replaced by the curvature, twist and
current load factor obtained in the previous cycle of iteration.

For some spatial rods. such as pretwisted rods and deep arches for instance. which do
not suffer significant prebuckling deformations, one does not need to distinguish between
the configuration of undeformed state and that for the current deformed state. In these
cases the first step in the above procedure will provide the final results. that is, the value of
). in eqn (49) will be the buckling load Per.

t In general 61\, # O. However for relatively small deformations 61\, « 61\. Thus one can assume that the
principal directions of the cross-section coincide with the updated directions of the normal and the binormal to
the centre line.
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7. ILLUSTRATIVE EXAMPLES

As a first example consider the buckling of a set of helical springs. The dimensions of
these springs with various L/ D ratios are given in Table 1. Two types of boundary conditions
are considered: (a) the springs are clamped at one end and at the other end only the
rotations are set equal to zero. and (b) the springs are clamped at both ends except for the
axial deflections at the upper ends. Results obtained by the iterative procedure. using two
elements for each coil of six springs. along with those obtained from Haringx formula [see
Wahl (1963)]. are shown in Table 2. It is seen that for springs with small pitch angles the
present element yields close but slightly lower buckling loads compared with Haringx
theory. In the Haringx theory the effect of large pitch angles is not considered. i.e. the
theory holds for small pitch angles only. This can be seen more clearly from the results for
spring Nos 3 and 7 which have larger pitch angles. Spring Nos 1 and 2 with the second
boundary conditions do not have buckling forms according to Haringx theory. and indeed
there were no convergent solutions obtained by the present element. The results for the
iterative process of spring No. I with 12 elements are shown in Table 3. With good linear
characteristics. the springs were assumed to deform linearly in the prebuckled states.
Therefore the incremental load tiP for each itcration stcp was set equal to the actual

Table I. Geollletric sizes of springs (mm)

Spring Spring Wire No. of
No. Length diameter diameter coils

100 ~5 5 (,

~ 50 10 2 10
J 240 40 Ii (,

4 720 100 25 15
5 90 10 4 15
(, 120 10 2 20
7 240 20 4 (,

Table 2. Critical loads for springs

Pitch Critical loads (N)
Spring angle H.C. I B.C. 2

No. LID (degree) F.E.M. Ilaringxt F.E.M. Haringx

I 4 11.9K 1313.3 1336.5
2 5 9.04 96.50 97.32
3 6 17.7 2024.2 2IOK.I 10116.8 10771.8
4 7.2 K.69 10466.5 10 545.7 4K 182.9 48329.6
5 9 10.8 539.6 545.76 2345.3 2356.0
6 12 10.8 18.75 19.00 77.95 79.05
7 12 32.5 221.4 253.3 906.9 1054.1

t The authors arc indebted to one of the reviewers for pointing out the paper by
Krul.c1ecki allll Syckowski (1990) and computing the following results for these seven
springs. by the method presented in this reference: 1303.5. 96.1. 2027.0. 10449.7.
537.5. 18.72. 221.4.

Table 3. Iterative process for spring No.1 (12 clements)

Iterative
No.

(

2
J
4
5
6

p

o
101l4.4
1266.6
1303.5
1311.3
1312.9

76.5527
77.1241
77.2049
77.2201l
77.2241
77.2248

16.2449
13.5523
13.0922
12.9987
12.9790
12.9749

1084.4
182.22
36.934

7.7494
1.6376
0.3466
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Table 4. Convergence of buckling loads for spring No. 1

Buckling Number of elements
mode 6 8 10 12 18 24

I 1317.1 1315.8 1313.5 1313.3 1313.2 1313.0
2 1324.6 1322.3 1320.4 1320.3 1320.1 1319.9
3 4380.0 4358.5 4339.2 4340.0 4335.9 4334.7
4 4445.6 4369.5 4356.7 4348.8 4346.7 4345.4
5 830~.0 8169.1 8096.7 8070.8 8058.2 8052.8
6 8670.6 8189.9 8104.9 8083.8 8060.4 8054.9
7 1293\.6 12249.7 12045.9 12006.6 119~4.1 11909.7
8 13677.3 12432.6 12182.4 12067.0 12035.8 12020.4

incremental of the minimum eigenvalue (see Table 3). Table 4 shows the convergence of
the buckling loads of spring No. I as the number of elements increases. It is seen that for
the first buckling mode a very small number of elements. as few as one element per coil.
yields results quite close to the converged values. and the use of two elements per coil yields
results sufficiently accurate for higher order modes.

As a second example the buckling ofa quarter-circular arch. with circular cross-section.
was analysed under uniform external pressure. The two ends were pinned and the rotation
about the centreline was set to zero. In order to show the full capability of the present
element. both the in-plane and out-of-plane buckling 'analysis of the arch under both dead
load and follower forces was carried out. In the latter case. with follower forces. the simple
symmetrization of eqn (3) was not used in view of the nonconservative form of the follower
force. The dat~t used for this example arc as follows:

E = 0.21 x 10 12 Pa. v = 0.3. R = 10m. r = 0.1 m.

where R is the radius of the arch. and r the radius of the cross-section. Iterative computations
show that the prebuekling deformations arc not appreciable. Therefore only the first step
of iter:ttion W:tS carried out and the buckling loads obtained for the two load cases arc
shown in Tables 5(a) and (b) respectively. It is seen th~lt a small number of elements gives
quite good results.

Table 5(a). Buckling loads of arch with dead load (x 10' N)

Number of elements
Modest 6 8 10 12 14 16 18 20 Analyticalt

1 (OPS) 0.2849 0.2828 0.2818 0.2813 0.2810 0.2808 0.2806 0.2805 0.2801
2 (OPAl 2.1960 2.1722 2.1617 2.1560 2.1527 2.1505 2.1490 2.1480 2.1451
3 (lPA) 2.6749 2.6473 2.6350 2.6284 2.6246 2.6221 2.6204 2.6192 2.63119
4 (OPS) 5.57311 5.4922 5.45116 5.4415 5.4316 5.4253 5.4211 5.4181 5.4167
5 (IPS) 6.0600 5.9774 5.9422 5.9243 5.9141 5.9076 5.9033 5.9003 5.81178

tOPS-out of plane. symmetric: OPA-out of plane, antisymmetric: IPA-in plane, antisymmetrie: IPS-in
plane, symmetric.

tTimoshenko (1961). Wempner (1973).

Table 5(b). Buckling loads of arch with follower force (x 10' N)

Number of clements
Modes 6 II 10 12 14 16 18 20 Analyticalt

I (OPS) 0.5103 0.50.14 0.5003 0.4986 0.4976 0.4970 0.4965 0.4962 0.4948
2 (OPA) 2.5406 2.5021 2.4911 2.4853 2.48 III 2.4796 2.4781 2.4770 2.4740
3 (lPAl 2.5406 2.5095 2.4958 2.4884 2.4841 2.4813 2.4794 2.4780 2.4740
4 (IPS) 5.8736 5.8175 5.7751 5.7461 5.7365 5.7304 5.7263 5.7237 5.7229
5 (OPS) 5.9462 5.8559 5.8188 5.8000 5.7892 5.7823 5.7837 5.7744 5.7727

tTimoshenko (1961), Wempncr (1973).
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Fig, 3, A quarter circular arch with end couples,

As a final example the out-of-plane buckling of a quarter circular arch under terminal
couples. as shown in Fig. 3, was analysed. This example cannot be analysed by means of
an assemblage of prismatic beam elements, as found in most commercial FE programs
since in such programs the effect of initial bending moments is neglected. The example data
are as follows:

E = 0.21 X 10 12 Pa. v = 0.3, R = 10 m, b == 1.0 m. t = 0.05 m.

Results obtained by the present clement along with the analytical solution, are shown in
Table 6. for the four lowest modes. It is seen that for the first buckling mode only two
clements give quite good results.

Table 7shows the results obtained by 12 clements for an arch subjected to end moments
with various values of radius while the total length remains unchanged. It is seen that as
the radius becomes larger, the first buckling load converges to the lateral buckling load of
a thin straight beam (Timoshenko, 1961).

ll, CONCLUDING COMMENTS

From the equilibrium equations of the perturbed state a variational function has been
derived for the buckling analysis of spatially curved and twisted rods. Using this functional
stiffness and geometric stiffness matrices have been derived for a general curved and twisted
element.

The clement takes account of initial bending moments and shear forces as well as the
axial load. Furthermore the element can be used for buckling analysis of rods subjected
to conservative and nonconservative follower type forces. Although the nonconservative
problem analysed is of divergent type, formulation presented can be used for flutter type

Table 6. Buckling loads of an arch with end moments (x 10' N)

Number of elements
Modes 2 4 6 II 10 12 14 16 Analyticalt

0.2759 0.2701 0.2690 0.26ll7 0.26ll5 0.2684 0.2684 0,2683 0,2682
2 1.7393 0.ll5119 0,8312 0.8216 0,8171 0.8147 0.8133 0.ll123 0.8093
3 4.4993 1.5572 1.4518 1.4079 1.3875 1.3764 1.3698 1.3655 1.3514
4 9,0722 7.2896 2,1552 2.0475 1.9925 1.9623 1.9441 1.9323 1.8938

tTimoshcnko (1961). Wempner (1973).

Table 7. The first buckling load of arch with varying radius (x 10· Nm)

R 10 20 100 200 500 1000 1250

M" 0.26!l4 OA053 0,5163 0.5302 0.5378 0.5417 0.5420 0.5427
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nonconservative problems. In this case of course the kinetic criterion must be used and a
mass matrix must be developed. This work is reported in a separate publication.

For some curved and twisted rods initial deformations become significant prior to
buckling. The major contributions for such initial deformations come from finite rotations
and result in changes in the rod's curvature and twist. A procedure has been outlined to
incrementally account for such changes of geometry.

The illustrative examples given verify the formulation and demonstrate the rather good
performance of the element developed.
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AI'I'END(X

For the rod with follower distributed loads. an edr<! virtual work term. accounting for the contributions of
the follower forces. mllst be appended to lhe functional. This lerm may be written as follows:

+p,[ - ()rJII~ - (II!, + ru~)Jur! +PJ[(lIr -til! +"ur)Ju~+ (II!, +fUrJJII!!

+ I ,[OrJO! -()!JOrl + 1,[O~JOr -OrJO~1 +t J[O!JO~ -O~iiOW ds. (A I)

where PI' p,. p,. I,. I,.', arc the dislributed force and moment paramelers. The various terms in the above integral
may be interpreted in a manner similar to lhal used in e'ln (32).


